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Abstract. We discuss the mode spectrum in both the deterministic and noisy Burgers equations in one
dimension. Similar to recent investigations of vortex depinning in superconductors, the spectrum is given
by a non-Hermitian eigenvalue problem which is related to a ‘quantum’ problem by a complex gauge
transformation. The soliton profile in the Burgers equation serves as a complex gauge field engendering a
mode transmutation of diffusive modes into propagating modes and giving rise to a dynamical pinning of
localized modes about the solitons.

PACS. 05.10.Gg Stochastic analysis methods (Fokker-Planck, Langevin, etc.) – 05.45.-a Nonlinear dy-
namics and nonlinear dynamical systems – 64.60.Ht Dynamic critical phenomena – 05.45.Yv Solitons

The noisy Burgers equation and the related Kardar-Parisi-
Zhang (KPZ) equation provide a continuum description
of an intrinsically nonequilibrium noise-driven system.
As such they delimit an interesting class of systems far
from equilibrium. Specifically, the equations apply to the
growth of an interface either due to a random drive or
subject to random environments.

In the case of one spatial dimension, which is our con-
cern here, the Burgers equation for the local slope u = ∇h
has the form [1](

∂

∂t
− λu∇

)
u = ν∇2u+∇η. (1)

The related KPZ equation for the height h [2] is ∂h/∂t =
ν∇2h+ (λ/2)(∇h)2 + η. The damping constant ν charac-
terizes the linear diffusive term. The coupling strength λ
controls the nonlinear growth or mode coupling term. The
noise η is spatially short-ranged Gaussian white noise cor-
related according to 〈η(xt)η(00)〉 = ∆δ(x)δ(t) and char-
acterized by the strength ∆.

The stochastic equation (1) and its KPZ version have
been studied intensively in particular in recent years and
much insight concerning the pattern formation and scal-
ing properties engendered by these equations has been
gained on the basis of i) field theoretical approaches [3],
ii) mapping to directed polymers [4], and iii) mapping to
the asymmetric exclusion model [5].

In recent works [6] we advanced a Martin-Siggia-Rose
based canonical phase space approach to the noisy Burgers
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equation (1). This method applies in the weak noise limit
∆ → 0 and replaces the stochastic Burgers equation (1)
by two coupled deterministic mean field equations(

∂

∂t
− λu∇

)
u = ν∇2u−∇2p , (2)(

∂

∂t
− λu∇

)
p = −ν∇2p , (3)

for the slope field u and a canonically conjugate noise field
p, characterizing the noise η.

The appearance of the noise field p is an intrinsic fea-
ture of the Martin-Siggia-Rose functional approach, where
averaging over the noise η, implementing the Burgers
equation (1) as a delta function constraint, gives rise to
an extra field p in addition to u. Another way is to regard
the functional Fokker-Planck equation associated with the
Burgers equation as an effective “Schrödinger equation”.
The noise field p is then the canonically conjugate variable
to the slope u; this “doubling of variables” is a general fea-
ture of the deterministic path integral formulation of the
stochastic problem and was also encountered in the con-
text of mapping an interface onto a spin model [7].

The field equations derive from a principle of least ac-
tion with Hamiltonian density H = p(ν∇2u + λu∇u −
(1/2)∇2p) and determine orbits in a canonical phase space
spanned by u and p. Moreover, the action associated with
a finite time orbit from u′ to u, S =

∫ t,u
0,u′ dtdx(p∂u/∂t−

H), provides direct access to the transition probability
P (u′ → u, t) ∝ exp[−S/∆] and associated correlations; an
important aspect which was pursued in [6].
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On the ‘zero noise’ manifold for p = 0 the field equa-
tion (2) reduces to the noiseless Burgers equation [8](

∂

∂t
− λu∇

)
u = ν∇2u , (4)

which, as a nonlinear evolution equation exhibiting tran-
sient pattern formation, has been used to model ‘turbu-
lence’ and for example galaxy formation [9], see also [10].

In this paper we discuss two new features associated
with the pattern formation in the Burgers equation in
both the noiseless case (4) and the noisy case in terms of
(2) and (3). We focus on the interplay between localized
nonlinear soliton modes and superposed linear modes and
show i) the soliton-induced mode transmutation of diffu-
sive modes into propagating modes and ii) the dynamical
pinning of linear modes about the solitons. Details will
appear elsewhere.

It is a feature of the nonlinear growth terms that
the field equations (2) and (3) admit nonlinear localized
soliton solutions, in the static case of the kink-like form

uµs = µu tanh[ksx] , ks =
λu

2ν
, µ = ±1 . (5)

The index µ labels the right hand soliton for µ = 1 with
ps = 0, also a solution of the damped noiseless Burgers
equation for η = 0; and the noise-excited left hand soliton
for µ = −1 with ps = 2νus, a solution of the growing
(unstable) noiseless Burgers equation for ν → −ν. The
amplitude-dependent wavenumber ks sets the inverse
soliton length scale. Noting that the field equations (2)
and (3) are invariant under the slope-dependent Galilean
transformation

x→ x− λu0t , u→ u+ u0 , (6)

propagating solitons are generated by the Galilean
boost (6). Denoting the right and left boundary values
by u+ and u−, respectively, the propagating velocity is
given by the soliton condition

u+ + u− = −2v/λ . (7)

It follows from the quasi-particle representation
advanced in [6], see also [7], that a general interface
slope profile u = us + δu at a particular instant can be
represented by a dilute gas of solitons amplitude-matched
according to (5) with superposed linear modes δu. For a
configuration consisting of n solitons we then have

us =
2ν
λ

n∑
p=1

kp tanh |kp|(x− vpt− xp) , (8)

where we have introduced the mean amplitude of the
pth soliton kp = (λ/4ν)(up+1 − up), up+1 and up are the
boundary values. The velocity of the p-th soliton is vp =
−(λ/2)(up+1 + up), xp is the center of mass, and we are
assuming vanishing boundary conditions u1 = un+1 = 0.
Note that the configuration (8) is only valid at times in be-
tween soliton collisions; the interface changes dynamically
subject to the conservation of energy, momentum, and to-
tal area

∫
dx u under the slope profile. The number of
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Fig. 1. We depict an n-soliton slope configuration of a grow-
ing interface. The p-th soliton moves with velocity vp =
−(λ/2)(up+1 + up), has boundary value u+ and u−, and is
centered at xp. The arrows on the horizontal inter-soliton seg-
ments indicate the propagation of linear modes.

solitons, however, is not conserved, see [6,7]. In Figure 1.
we have depicted an n-soliton configuration.

In order to discuss the linear mode spectrum about
the soliton configuration us it is convenient to introduce
the shifted noise field ϕ

p = ν(u− ϕ) . (9)

The field equations (2) and (3) then assume the symmet-
rical form, also discussed in [7],(

∂

∂t
− λu∇

)
u = ν∇2ϕ , (10)(

∂

∂t
− λu∇

)
ϕ = ν∇2u . (11)

In the linear Edwards-Wilkinson case [11] for λ = 0 the
field equations readily support a diffusive mode spec-
trum of extended growing and decaying modes, u ±
ϕ ∝ exp(∓νk2t) exp(ikx), i.e., u = [A exp(−νk2t) +
B exp(νk2t)] exp(ikx), consistent with the phase space in-
terpretation discussed in [6], see also [7].

Expanding about us and the associated noise field ϕs

(ϕµs = µuµs for µ = ±1),

ϕs =
2ν
λ

n∑
p=1

|kp| tanh |kp|(x− vpt− xp) , (12)

u = us + δu and ϕ = ϕs + δϕ, the superposed linear
mode spectrum is governed by the coupled non-Hermitian
eigenvalue equations(

∂

∂t
− λus∇

)
δu = ν∇2δϕ+ λ(∇us)δu , (13)(

∂

∂t
− λus∇

)
δϕ = ν∇2δu+ λ(∇ϕs)δu . (14)

In the inter-soliton matching regions of constant
slope field ∇us = ∇ϕs = 0 and the equations (13)
and (14) decouple as in the Edwards-Wilkinson
case. Setting us = u and searching for solu-
tions of the form δu, δϕ ∝ exp(−Ekt) exp(ikx)
we obtain δu ± δϕ ∝ exp(−E±k t) exp(ikx), i.e.,
δu = [A exp(−E+

k t) + B exp(−E−k t)] exp(ikx), where
the complex spectrum characteristic of a non-Hermitian
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eigenvalue problem is given by
E±k = ±νk2 − iλuk . (15)

Introducing the phase velocity v = λu the δu mode
corresponds to a propagating wave with both a growing
and decaying component

δu ∝ (Ae−νk
2t +Beνk

2t)eik(x+vt) . (16)

The presence of the nonlinear soliton profile thus gives
rise to a mode transmutation in the sense that the diffu-
sive mode in the Edwards-Wilkinson case is transmuted
to a propagating mode (16) in the Burgers case. As indi-
cated in Figure 1 the linear mode propagates to the left
for u > 0 and to the right for u < 0. We note in particular
that for a static right hand soliton u± = ±u and the mode
propagates towards the soliton center which thus acts like
a ‘sink’; for a static left hand soliton the situation is re-
versed, the mode propagates away from the soliton which
in this case plays the role of a ‘source’.

In the soliton region the slope field varies over a scale
given by k−1

s and we must address the equations (13)
and (14). Introducing the auxiliary variables

δX± = δu± δϕ , (17)

they take the form

− ∂δX±

∂t
= ±D

(
± λ

2ν
us

)
δX± − λ

2
(∇us ± ∇ϕs)δX∓ ,

(18)

where D(±λus/2ν) is the ‘gauged’ Schrödinger operator

D

(
± λ

2ν
us

)
= −ν(∇± λ

2ν
us)2 +

λ2

4ν
u2

s −
λ

2
∇ϕs , (19)

for the motion of a particle in the potential (λ/4ν)u2
s −

(λ/2)∇ϕs subject to a gauge field (λ/2ν)us given by us.
In the regions of constant slope field ∇us = ∇ϕs =

0, us = u, D(±λus/2ν) → −ν(∇ ± λu/2ν)2 +
(λ/4ν)u2 and searching for solutions of the form δX± ∝
exp(−Ekt) exp(ikx) we recover the spectrum (15). In the
soliton region ∇ϕµs = µ∇uµs , µ = ±1, and one of the
equations (18) decouples driving the other equation para-
metrically.

In order to pursue the analysis of (18) we note that
the gauge field λus/2ν in the Schrödinger operator can
be absorbed by means of the gauge or Cole-Hopf [12]
transformation

U = exp
[
− λ

2ν

∫
dx us

]
. (20)

Using the relation D(±λus/2ν) = U±1D(0)U∓1 we
obtain the Hermitian eigenvalue equations

− ∂δX±

∂t
= ±U±1D(0)U∓1δX± − λ

2
(∇us ±∇ϕs)δX∓ ,

(21)

which are readily analyzed in terms of the spectrum of
D(0) discussed in [10].

The exponent or generator in the gauge transforma-
tion (20) samples the area under the slope profile us up

to the point x. For x → ∞, U → exp[−λM/2ν], where
M =

∫
dx us is the total area; according to (1) or (2)

M is a conserved quantity. In terms of the height field
h, u = ∇h, M = h(+L) − h(−L) is equal to the height
offset across a system of size L, i.e., a conserved quantity
under growth. Inserting the soliton profile us (8) the
transformation U factorizes in contributions from local
solitons, i.e.,

U =
n∏
p=1

U signkp
p , Up = cosh−1 kp(x− vpt− xp) . (22)

Focusing on a particular soliton contribution to the inter-
face with boundary values u+ and u− and for convenience
located at xp = 0 the analysis is most easily organized by
first performing a Galilean transformation (6) to a local
rest frame by shifting the slope field by (u+ +u−)/2, cor-
responding to the velocity given by (7). The static soliton
is then given by (5), u± = ±u, and

D(0) = −ν∇2 + νk2
s

[
1− 2/ cosh2 ksx

]
, (23)

describing the motion of a particle in the attractive po-
tential −2νk2

s / cosh2 ksx whose spectrum is known.
Denoting the eigenvalue problem D(0)Ψn = ΩnΨn

the spectrum of D(0) is composed of a zero-energy
Ω0 = 0 localized state Ψ0 ∝ cosh−1 ksx, yielding the
soliton translation mode lifting the broken translational
symmetry, and a band Ψk ∝ exp(iksx)sk(x) of extended
phase-shifted scattering modes with energy

Ωk = ν(k2 + k2
s) . (24)

sk(x) = (k+ iks tanh ksx)/(k− iks) is a modulation of the
plane wave state; for x→∞, sk(x)→ exp(iδk), where δk
is the phase shift of the wave.

Inserting ∇ϕµs = µ∇uµs the fluctuations
δX̃± = U∓µp δX± , Up = cosh−1 ksx , (25)

then satisfy the Hermitian eigenvalue equations

−∂δX̃
±

∂t
= ±D(0)δX̃± − νk2

s (µ± 1)δX̃∓ , (26)

which decouple and are analyzed by expanding δX̃± on
the eigenstates Ψn. For the right hand soliton for µ = +1
and focusing on the plane wave component, ignoring
phase shift effects, we obtain in particular the fluctuations

δX+ = (Ae−Ωkt +BeΩkt)eikx cosh−1 ksx , (27)

δX− = B
Ωk
νk2

s

eΩkteikx coshksx. (28)

For real k the modes δX± are diffusive and the spectrum
Ωk = ν(k2 + k2

s ) exhibits a gap νk2
s proportional to the

soliton amplitude squared. Moreover, the gauge transfor-
mation Up gives rise to a spatial modulation of the plane
wave form which allows us to extend the spectrum by an
analytical continuation in the wavenumber k. In particu-
lar by setting k → k ∓ iks for δX± and noting that δX±
decouple for x � k−1

s we have Ωk → νk2 ∓ 2iνkks and
exp(ikx) cosh∓1 ksx → const. and we achieve a matching
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to the extended propagating modes in the inter-soliton re-
gions. A similar analysis applies to the left hand soliton
for µ = −1 and the gauge transformation (22) allows for a
complete analysis of the linear fluctuation spectrum about
the multi-soliton configuration us.

The phenomena of mode transmutation has also been
noted by Schütz [13] in the case of the asymmetric exclu-
sion model, a lattice version of the noisy Burgers equation,
in the context of analyzing the shocks, corresponding to
the solitons in the present context.

The last issue we wish to address is the fluctuation
spectrum in the noiseless case, extending the analysis in
[10]. In this case we only have the right hand soliton for
µ = +1 and the soliton and associated fluctuations lie on
the zero-noise manifold for p = 0. There is no coupling
to the ‘noisy’ modes i.e., u = ϕ, δu = δϕ = δX+/2,
and δX− = 0, and the fluctuations are given by (27) for
B = 0 (ignoring phase shift effects)

δu = δX+/2 ∝ e−Ωkteikx cosh−1 ksx . (29)

It is an essential feature of the non-Hermitian eigenvalue
problem (18) characterizing noisy nonequilibrium growth,
and in the noiseless case of transient growth yielding
(29), that the real spectrum (24) can be extended into
the complex eigenvalue plane. This is due to the envelope
cosh−1 ksx which gives rise to a spatial fall off. Setting
k → k + iκ, Ωk → Ek,κ, where

Ek,κ = ν(k2 + k2
s − κ2) + 2iνkκ . (30)

For |κ| < ks we have a band of localized fluctuations dy-
namically pinned to the soliton. The modes are exponen-
tially damped with a damping constant given by the real
part of Ek,κ, ReEk,κ = ν(k2

s − κ2). The imaginary part
of Ek,κ, ImEk,κ = 2νkκ, combined with the phase ikx
yields a propagating wave with phase velocity 2νκ, finally
the spatial range of the mode is given by (ks − κ)−1. For
κ = 0 the spectrum is real, the phase velocity vanishes,
the range is k−1

s , and the localized mode is symmetric and
purely diffusive with a gap k2

s . For κ = ks, the borderline
case, the fluctuations are extended in space and purely
propagating with a gapless spectrum νk2. For interme-
diate κ values the modes are propagating with localized
envelopes. In Figure 2 we have depicted the complex eigen-
value spectrum.

In this paper we have analyzed two aspects of the
interplay between linear superposed modes and nonlin-
ear soliton excitations in the noiseless and noisy Burg-
ers equations describing transient and stationary nonequi-
librium growth, respectively. Both aspects are intimately
related to the non-Hermitian character of the eigenvalue
problem. The first aspect is a linear mode transmutation
where the diffusive non-propagating modes in the linear
Edwards-Wilkinson case owing to the solitons are trans-
muted to propagating extended modes in the nonlinear
Burgers case. The second aspect is a dynamical pinning
of a band of localized modes to the solitons. We finally
note that similar aspects are also encountered in recent
work on the transverse Meissner effect and flux pinning in
superconductors [14]. Here the uniform gauge field is given
by the transverse magnetic field whereas in our case the

���
���
���
���

��

Im Ek,κ

damped

νks
2

κ=ks

κ<ks

κ=0
ReEk,κ

κ > -ks

κ= -ks

Fig. 2. We depict the the complex eigenvalue spectrum for
the damped modes in the noiseless Burgers equation. On the
boundaries κ = ±ks the modes are extended and propagating.
The shaded area indicates propagating modes with localized
envelopes. For κ = 0 the mode is symmetrical and purely dif-
fusive.

nonlinear soliton profile provides the nonuniform gauge
field.

Discussions with A. Svane, K. Mølmer, J. Hertz, B. Derrida,
M. Lässig, J. Krug and G. Schütz are gratefully acknowledged.
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Täuber, E. Frey, Phys. Rev. E 51, 6319 (1995); E. Frey,
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